
Mecha2000
Autonomous robot for LARC 2013's IEEE Open

Matías Estrada
Facultad de Ingeniería, Universidad de la República

Montevideo, Uruguay

Nicolás Furquez
Facultad de Ingeniería, Universidad de la República

Montevideo, Uruguay

José Lombardi
Facultad de Ingeniería, Universidad de la República

Montevideo, Uruguay

Lázaro Pereira
Facultad de Ingeniería, Universidad de la República

Montevideo, Uruguay

Abstract—Following the assignment of embedded robotics
class our team developed a robot capable of resolving the
challenge of the IEEE in IEEE Open category. This paper
describes the technical characteristics of Mecha2000, which is the
name of the robot and the team. This robot was designed using
Usb4butia board and uses techniques of behavior-based robotics,
which guarantee good response times in a controlled
environment. Mecha2000 ranked first in the category Sumo.uy
IEEE Open.

Keywords—robotics, behavior-based robotics, Mecha2000,
sumo.uy, usb4butia, IEEE Open, Larc 2013.

I. INTRODUCTION

This document contains the hardware and software design
to solve the challenge IEEE Open presented at the LARC2013.
The first part of the document records the paradigm used and
behaviors found. Then will go provide a description of the
physical design and the hardware used.

II. PROBLEM DESCRIPTION

The challenge of IEEE Open 2013 is about collecting cans
(garbage) on a beach (scenario) without colliding with
obstacles disposed therein and then deposit the items collected
in a tank.

A. Paradigms

We used a behavior-based reactive paradigm [9], where
each specific behavior has execution priority over the rest. This
determines that all behaviors are sensing in parallel, but only
the one with the highest priority will control the robot actuators
and it is interrupted if and only if a higher priority behavior,
needs to be run. That paradigm is reactive robot will act on the
basis of sensory stimuli, without planning and without
considering their movements for a given movement previous
stimuli nor environmental status information than it did it
move..

B. Environment

The environment is partially observable because the agent
can not sense the overall state of it, you only have access to
what is in front of the sensors located on the agent. One can
also say that the environment is stochastic, because you can not
determine the resulting state after the agent acts. As the task
that the robot is part of a play, with a beginning and end, and
you can re-start, the environment can be described as episodic.

Other features are the continuity of space and that the
environment is semi-dynamic because the cans, sand and the
chair does not change place without the intervention of the
agent, but as time passes, you lose the possibility of lifting cans
if nothing is done.

III. SOLUTION DESCRIPTION

A. Robotic Platform

• BeagleBoard: used as a computer center of the robot,
we must take into account its limitations so that the
development will be limited by its processing capacity.

• Motors AX-12 and AX-18 [3]: actuators that allows us
to mobilize the robot on stage and perform the actions
to collect cans and then throw the container.

• Bioloid kit [3]: parts kits that we needed for assembly
robot.

• Acrylic Base, reusing old parts kits Butiá [2].

• Input Output USB4Butiá board [2]

B. Sensors

Sensors are an important part of building a situated robot,
since these depend on the actions carried out. Sensors that are
considered are:

• Camera

• Infrared Sensor

Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Each physical sensor has a class that represents and is
responsible for processing the information provided by the
sensor. All these classes have the same structure, inherited
from the Sensor class, thus we can add sensors without causing
too many changes at the code level.

The classes that are implemented are:

• SensorCamaraWhite: responsible for obtaining an
image of the camera and process it.

• SensorDistancia: is responsible for taking the values
returned by the infrared sensor.

The sensors can be executed in the form of threads
independent of one another or sequentially. For simplicity we
decided to perform the sensing in sequence, each sensor
collects information stage independently and simultaneously,
the sensors do not decide what behavior to execute, just collect
information.

Fig. 1. Sensor Architecture

The Sensor class is the superclass of all implementations of
the particular sensor drivers. Has an associated data structure
which serves for data transfer between the individual sensors
and behaviors. Each particular implementation can be written
in the dictionary like structure.

The purpose of this is to decouple the sensors of behavior,
and that the latter can read data structure assuming that this is
always current.

The run () function is called by the start of the thread,
therefore is only called if the sensors are used concurrently.
What this function does is, in an infinite loop calling action ()
and before sending the thread to sleep. In Sensor, the function
action () is abstract, and and it is the only one that subclasses
must implement. In this way each sensor controller using a
separate thread.

1) SensorDistancia:
It runs on a separate thread from the main thread, / * Data

Just type in reading every time action () is called * /. He writes
under the key 'SensorDistancia :: <puerto_u4b>'.

2) SensorCamaraWhite:
This driver is more complex, as it includes image

processing and writes to the data structure processed
information about the position of the can and the red recipient.

For the imaging process we use the library libopencv [4]
version for python. This library was chosen because of its high
power and popularity, which makes it possible to find large
quantities of articles, and examples of their use.

The class constructor initializes all parameters such as the
size of capture, so reduce the processing time and memory
usage.

The function action () takes a picture from the camera,
transforms into the HSV color space [5] and then continue with
the different stages of processing.

The first thing you do is detect the color white (sand) and
keep the outline bigger and closer to the robot (greater axis)
and using ConvexHull function [7] define a new contour that
will serve as a mask for the rest the process. In Figure 2 you
can see the sand ConvexHull marked in blue.

The mask is an image of the same size of the original
image, only black and white, where white represents a one in a
binary mask. To generate a mask is printed a polygon or
contour with all the stuffing into a black and white image.

Fig. 2.Processed Images

Then he makes a threshold [8] to detect black, filtered with
sand mask, and detected contours (contours marked in yellow
in Fig 2). The sand mask ensures that black which is detected
elements are cans not from outside the court, nor strong
shadows.

After filtering by size of rectangle area that includes each of
the detected contours (marked in red in Figure 2), we choose
the rectangle closest to the robot (marked green in Figure 2) or
whatever it has the largest area.

Having chosen a rectangle, it is assumed to a can and is
written in to the data structure with the keys 'Camara :: lata_x',
'Camara :: lata_y' and 'Camera :: find'.

In case you can not detect a rectangle is set to 'Camara ::
find' value 'FALSE'.

Fig. 3.Solution problems

The way that was chosen to discard external noise makes
the sensor to have problems detecting some edge cases . An
example is shown in Figure 3, which can be seen that sand
mask causes it to lose part of the can, becoming more
noticeable when the robot approaches the can, because at a
time only is going to can and carpet, no white background (in
this case simulating the sand), and can not be detected.

Detection of red trash was made the same way, only instead
of doing the threshold by black it was done by levels of red.
The driver chooses the larger rectangle and writes under the
keys 'Camara :: tacho', 'Camara :: tacho_x' and 'Camera ::
tacho_y'.

C. Behavior Architecture

To solve the problem we used a behavioral architecture
implemented by the group, inspired by the subsumption of
LeJOS implementation [6]. It is characterized by being based
on the paradigm reactive behavior-based control.

Like LeJOS implementing behaviors are chosen for their
priority and this is given by its position in an array in which
behaviors are found.

There is an Arbitrator in charge of asking each behavior in
its array of behaviors if anyone is ready to be executed by
calling TakeControl function (): boolean. From the way it runs,
the first to return true is going to be executed. The releaser
depends on the behavior and is encoded in TakeControl
function, which in all cases corresponds to check to the data
structure mentioned in section sensors in a particular key
(unless wander behavior that always returns true).

The fixed action pattern is represented by states within each
behavioral which in general depend on the time spent. An
example is the behavior to avoid water that once the release
triggers the behavior (gray sensor type a value less than a limit
on to the data structure) takecontrol is returning true but no
longer is detecting water with sensors for a configurable time.

The following lists and describes the behavior employed:

1) CompWander
The behavior is based on wandering the scenario with the

objective of finding objects or obstacles. within the behavior
We keep a state, telling us is being done at all times, changing
over time to other states. What you have is actually a non-
deterministic state machine to achieve a random motion. The

movements performed are: move forward, turn left and turn
right.

2) CompLata
The behavior is activated when the key value 'Camara ::

encontro' within the data structure is set to "True". When
active, it gets the value of another key in the data structure,
'Camara :: lata_x', which tells me the position along the x axis
of the object within the visual field of the robot. With this value
focus the robot path to approach the target. To center the target,
making turns to the right and left and when centered proceeds
to be aimed in the correct position in order to pick it up. To see
if the target is within an acceptable distance, we need to know
the position in the Y axis value stored in 'Camera :: lata_y'
within the data structure. With this value we can regulate the
speed at which we aproach us to to target.

3) CompCargarLata
Behavior is activated when the camera sensor writes in the

data structure that a can was found. It activates the clamps and
grasps what it has in front the clamps. The behavior continues
to operate while the clamps are moving.

4) CompEvitar
This behavior is designed to prevent collisions with

obstacles, in this case chairs, but also has the ability to avoid
colliding with obstacles similar to a high chair. The behavior is
triggered when the value stored in any of the keys
'SensorDistancia :: <puerto_u4b>' exceeds a predefined
threshold value. In that case the robot executes a sequence of
actions to avoid colliding with the obstacle.

Fig. 4.Behaviors Architecture

5) CompAgua
The behavior aims to avoid falling out of the scenario, in

fact if we look at the context of the challenge, it would not fall
into the water. Can also be regarded as a reflection in the
presence of water under the robot. As in the previous case, the
behavior is activated when the value stored in one of the keys
'SensorGrises :: <puerto_u4b>' exceeds a preset limit. In that
case the robot executes a sequence of actions that would avoid
falling into the water.

IV. PHYSICAL STRUCTURE

A. Chasis

The chassis of the robot is developed with acrylic and
aluminum which gives both stability and lightness not to
demand AX-18 motors that are responsible for moving the
tracks.

B. Clamps

The clamps are made of aluminum arm and wire which
allows to collect and filter the sand cans which could grab
when loading it, both clamps are driven by motors AX-12

C. Cans deposit

Cans deposit is designed to be as light as possible. To them
was designed using cartonplast, which is very rigid and
lightweight. To deposit the cans in the dumpster, the container
has at its core a AX-12 engine which allows it to swing and so
download cans.

V. CONCLUSION

Building a robot requires an extensive commitment both to
see mechanical, electronic and computational aspects of the
robot. Each of these tasks is very different in the area to be
investigated the possibilities to improve the performance of the
robot to the required task.

Since the robot still has some details to improve, this
solution is not final, and these improvements will be reflected
in subsequent solutions in order to progress towards the LARC.

REFERENCES

[1] Reglamento oficial para la categoría IEEE Open,
http://ewh.ieee.org/reg/9/robotica/Reglas/LARC2012_open-
rules_v1.1.pdf, visitada Setiembre 2013.

[2] Proyecto Butia, http://www.fing.edu.uy/inco/proyectos/butia, visitada
Setiembre 2013

[3] Robotis - Dynamixel, http://www.robotis.com/xe/dynamixel_en, visitada
Setiembre 2013

[4] libopencv Open Source Computer Vision, http://opencv.org/, visitada
Setiembre 2013

[5] Modelo de color HSV,
http://es.wikipedia.org/wiki/Modelo_de_color_HSV, visitada
Septiembre 2013

[6] Java for Lego Mindstorms, http://lejos.sourceforge.net visitada
Setiembre 2013

[7] Convex Hull.
http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/hull/hull.h
tml visitada Setiembre 2013

[8] Basic Thresholding Operations,
http://docs.opencv.org/doc/tutorials/imgproc/threshold/threshold.html
visitada Setiembre 2013

[9] Robots Autónomos y Aprendizaje por refuerzo,
http://www.fleifel.net/ia/robotsyaprendizaje.php visitada Setiembre 2013

	I. Introduction
	II. Problem Description
	A. Paradigms
	B. Environment

	III. Solution Description
	A. Robotic Platform
	B. Sensors
	1) SensorDistancia:
	2) SensorCamaraWhite:

	C. Behavior Architecture
	1) CompWander
	2) CompLata
	3) CompCargarLata
	4) CompEvitar
	5) CompAgua

	IV. Physical Structure
	A. Chasis
	B. Clamps
	C. Cans deposit

	V. Conclusion

