
HS-GreenFist: Beach Cleaner Robot
Team Description Paper - LARC 2013. IEEE Open Category

Rel Guzman Apaza ∗1, Edwin Gutierrez Linares ∗2, Enrique A. Soto Mendoza ∗3, Elvis D. Supo Colquehuanca #4

∗ Systems Engineering, National University of St. Agustin
Arequipa, Peru

1 r.guzmanap@gmail.com
2 edwin641@gmail.com

3 e.sotomendoza@gmail.com
Electronic Engineering, National University of St. Agustin

Arequipa, Peru
4 elvis.supo@gmail.com

Abstract—This paper describes the development of the robot
we made to compete in the Open category of LARC (Latin
American Robotics Competition) 2013. The architecture and pro-
gramming of the robot is designed to counter the environmental
pollution problem; in this case the robot must be able to navigate
on the beach, collect cans found in this area and transport them
to a deposit.

Resumo—Este artigo descreve o desenvolvimento do robô que
fizemos para competir na categoria Open do LARC (Com-
petição Latino Americana de Robótica) 2013. A arquitetura e
programação do robô é projetado para combater o problema da
poluição do meio ambiente, neste Caso o robô deve ser capaz
de navegar na praia, coletar latas encontradas nesta área e
transportá-los para um depósito.

Index Terms—LARC, robotics, beach cleaner, computer vision,
kinect, arduino

I. INTRODUCTION

In the current context of environment protection and care,
waste collectors robots loom large, because they locate, collect
and dispose garbage in a controlled, autonomous and fast way.
In this specific case it was implemented an autonomous robot
capable to navigate in sand, collecting cans and transporting
them to a particular deposit. Developing waste collectors
robots is currently a research and investment matter, so this
document presents an efficient solution to the problem of
accumulation of garbage on the beaches. The name of the
robot is HS-GreenFist developed by the group of students
named HS-AQP.

This manuscript is organized as follows: in Section II is de-
scribed the mechanical parts of the robot. Section III presents
the computer vision system and the Kinect device used to
perform obstacle avoidance and the cans detection. Section
IV depicts the digital images processing and segmentation
techniques .Section V shows how soda cans are classified and
recognized. Section VI describes the electronic configuration
with the arduino boards. Finally, the major conclusions of the
work are drawn in Section VII.

II. MECHANICAL STRUCTURE

We decided to design a robot adapted to a low budget.
The main structure is shown in Figure 1 on which all the

components are mounted is made of steel and the body
is formed of various materials among like MDF (Medium
Density Fiberboard) and acrylic, while the arm is mainly made
of acrylic to reduce it’s weight. The design includes an arm
that allows the robot to pick up the cans in any position, while
a fixed "ramp" is responsible for depositing the cans aided by
its own weight.

Figure 1: Main Structure

A. Locomotion

The robot uses four wide tires allowing it to move under the
the same principle on which the caterpillar track perform its
movement. It was initially thought of using caterpillar track,
but the low pressure this could make, coupled with construc-
tion problems that might arise finally made us decide to use
wide tires. The movements that are expected to accomplish
are three:

1) Takes the robot back and forth.
2) Rotate the robot on its axis both clockwise and anti-

clockwise movement.
3) Correct the robot motion towards the left or right.
The movements of the motors are intended to be performed

in two speeds to which we will simply call fast and slow.

B. Excavator Arm

The excavator arm is shown in 2 and consists of a single
body with a claw on the end that allows the robot to collect

the cans through the sand, it will also have a small scanning
system as an actuator fixed to the claw. The movement of the
excavator arm is defined by two movements, one to raise or
lower the arm itself, and another to ensure that the can into the
claw. Movements are commanded by servomotors. The body
of the excavator arm consists mainly of acrylic.

(a) Arm in “down” state. (b) Arm in “up” state

Figure 2: Excavator Arm

C. Ramp
The ramp shown in Figure 3 will deposit the cans in the

container, and it’s movement is controlled by a servomotor.
It’s made of cardboard for it’s consistency and lightness, and
then it allows the servo motor to use just a little torque.

Figure 3: Ramp

III. VISION SYSTEM

For autonomous systems, being aware of the surrounding
environment is important for decision making. The idea of
using two viewpoints of the scene with cameras to get depth
information was originally developed by Charles Wheatstone
(1832), with the stereoscope [1]. The Kinect was made ac-
cording to this idea but with different hardware components
described in the following subsection.

One of the most complex and crucial tasks in the proposed
robot is the proper detection of cans and obstacles, and this is
made using some algorithms from computer vision, described
in the following sections.

A. Kinect
Device developed by Microsoft for the Xbox 360, it allows

programmers to recognize gestures and voice commands con-
trolling it [2]. The kinect components are shown in Figure 4.

Table I: Kinect Specifications, extracted from [3]

Feature Specification
Field of view 58◦ horizontal, 43◦ vertical, 70◦ diagonal
Elevation Angle +/-27 degrees
Frame rate (depth/color) 30 frames/second
Camera Resolution 640x512 px

We use it’s depth sensing (IR Projector and IR Camera), RGB
camera, and the motor. The Kinect is limited to it’s hardware
specifications showed in Table I.

Figure 4: Kinect external component identification

We use this device because it already calculate a depth map,
that is similar to the disparity map that is obtained with a stereo
vision system, We found the operational range for recognizing
depth by experimentation and it goes from 0.48m a 3.5m,

B. Robot Vision

In the robot, the Kinect is positioned in the top allowing
the RGB camera to see very near objects. We decided to
put the Kinect inclined 45◦ to the front, and according to
the specifications showed in Table I and the operational range
found, we found useful to take advantage of the motor, and
we define two states:

• The state M1 when the motor is moved 27◦ and the Kinect
is inclined 72◦ below the horizontal.

• The state M2 when the motor is moved −27◦ and the
Kinect is inclined 18◦ below the horizontal.

Figure 5: Representation of the Kinect Vision (Horizontal
View)

A representation of the Kinect Vision is shown in Figure
5, there is a the yellow region (R1a to R1b) and an orange
region (R2a to R2b), the robot can determine depths being
in states M1 and M2 correspondingly. The region between O
and P where the robot don’t see any object is very small, and
in the region between P and R1a the robot must use just the
RGB camera. We measured all distances and the robot can
recognize depth from R1a = 36cm to R2b = 1.86m, then it
recognize objects in a radio of 1.86m.

C. Kinect Depth Sensing Process

The process of how to make the robot have an accurate
position in the real world and to avoid obstacles can be
determined in two steps and do the process we used OpenNI
that has a middle-ware for the Kinect as well as a basic driver,
and OpenCV for the video processing.

1) Calibration: Align the RGB and depth data. According
to [4] OpenNI has it’s predefined parameters for cali-
bration and it’s not necessary to do the process.

2) Re-projection: Get distances from depth map by trian-
gulation. We use the predefined functions from [5] we
get the following:

• CV_CAP_OPENNI_BGR_IMAGE for 8 bit BGR
Image (converted from the RGB signal of the cam-
era)

• CV_CAP_OPENNI_DISPARITY_MAP} for 16 bit
disparity map from calibrated camera.

• CV_CAP_OPENNI_POINT_CLOUD_MAP for 3D
Reprojection Matrix

We transform the 16 bit disparity map from the Kinect, to
8 bit for visualization, both BGR Image and disparity map are
shown in Figure 6.

(a) BGR Image (b) Colorized depth map

Figure 6: Inputs from the Kinect

IV. IMAGE PROCESSING

With the aim to get the most accuracy target, we need
to process the incoming images first with pre-processing and
segmentation techniques.

A. Pre-Processing

We need pre-process the video frames in such environment
conditions where the illumination is variable, to do this we
use some techniques in this order:

1) Image Enhancement using Single Scale Retinex
(SSR): Using the Theory of Retinex proposed by [6], in

[7] is proposed an algorithm to accomplish the process
of enhancement using neighborhood operations. Retinex
takes an input digital image I and produces an output
image R on a pixel by pixel basis as in equation 1,
getting the image in Figure 7.

Ri(x,y) = log(Ii(x,y))− log[Fi(x,y)∗ Ii(x,y)] (1)

where i is the color channel, because it’s applied to each
channel in the BGR image, and ∗ is the convolution
operation. In [8], the matrix F is the Gaussian Kernel
2, and we use this approach.

F(x,y) =
1

2πσ2 e−
x2+y2

2σ2 (2)

2) Gaussian Blur with 7x7 kernel: We use the same kernel
to remove the noise produced by the camera and the
previous enhancement process.

Figure 7: Image enhanced with Retinex and Gaussian blur

B. Segmentation

As all technology people know, commonly images are
represented in the RGB color space, unfortunately when we
talk computer vision RGB values vary too much depending of
light conditions. In contrast HSV color space is much better in
this way; Hue depicts the color; saturation is the quantity color
or its purity and finally the value represents the light intensity.
To get the regions of interest where the cans are located, we
first use a color segmentation limiting the image color values
in HSV color space, 0 ≤ H ≤ 180, 0 ≤ S ≤ 50, 0 ≤ V ≤ 70,
and we can get the resulting image in Figure 8.

Figure 8: HSV colorspace

Figure 9: Segmentation using HSV

C. Structural Analysis and Shape Descriptors

As we have seen in Figure 9 , we doesn’t get a regular
binary image. So we need to join neighborhood points, then
we must apply dilation algorithm getting the image in Figure
10 and then for each blob we get a convex hull and a bounding
rectangle like in Figure 11.

Figure 10: Color segmentation using HSV

Figure 11: Segmentation with Convex Hull and Bounding
Rectangle

After that we discriminate them by shape and area using
the bounding rectangle, we get the image in Figure 12.

Figure 12: Discrimination by shape and area

V. CAN RECOGNITION

A. Feature Detection

Color is not sufficient for can recognition because there are
other dark objects like shadows and the obstacles.

1) Normalized Image Histogram values from 0 to 255
2) Speeded-Up Robust Features(SURF) features, SURF is

an improvement of SIFT algorithm to detect keypoints
from an image, but in contrast SURF is much faster. We
use the SURF implementation from OpenCV [9].

B. Support Vector Machine (SVM)

It’s a supervised learning algorithm that solves the problem
of classification between cans and other objects, it was initially
proposed by [10].

C. SVM for Linearly non-separable data

Unfortunately there can be data on incorrect regions like in
Figure 13.

Figure 13: Hyper-plane between two non-separable regions

Because of the limitations of the original SVM, we have to
use a kernel function K that defines a function denoted by φ ,
this function φ converts each point xi to a space where the
points are linearly separable [11], like in Figure 14.

Figure 14: Hyper-plane separating data in other space

Then, we apply the following equation to label each data.

Table II: Example of signal’s codes

SIGNAL ORDER
0001 Turn Left (on it’s axis)
0010 Turn Right (on it’s axis)
0011 Turn Left (curve/ position correction)
0100 Turn Right (curve/ position correction)

min
w,b,ξ

1
2

wT w+C
L

∑
i=1

ξi (3)

yi(wT
φ(xi)+b)≥ 1−ξi,

ξi ≥ 0, i = 1, . . . ,L

Where ξi is the tolerance, the parameter C is used to control
this tolerance, and φ is a function that maps each point in order
to change the data to be linearly separable. Each new point is
classified using Equation 4.

f (x) = sign(w ·φ(x)+b) (4)

The kernel function we use is the Sigmoidal Function:
K(xi,x j) = tanh(γ(xi ·x j)+a), where the parameters a,b,γ are
defined by user. After we discriminate the blobs by shape and
area, we classify each one getting just the ones that contain
cans, getting the image in Figure 15.

Figure 15: Regions that contain cans, classified with SVM

VI. ELECTRONICS

We decided to use Arduino because it’s the most commonly
used hardware for electronic development specially for robots,
also because our team members have experience with it.

Arduino can interpret information from environment
through its input pins from a wide range of sensors and
can manifest back its environment through its lights, engines,
servos, and any others actuators [12]. The Arduino’s board
microcontroller is programmed by of its own programming
language called Arduino. In the presented robot we used
Arduino Uno to communicate between the Computer and Pic
16F87, this communication is done by the computer’s serial
port; receiving and sending 4 bytes signals shown in Table II
to the pic and executing appropriate orders.

VII. CONCLUSIONS AND FUTURE WORK

As a project’s general conclusion, we highlight the input
towards the polution’s reduction in our environment, It’s clear

Figure 16: Arduino Board

that our project is a prototype, but we could say that we are
founding bases to create something bigger.

On the other side, in the specific conclusions we detach the
junction of basic scients: the mechanic part, and the use of
its physics’ basic principles; the electric part on the same way
and the usage of computer vision to reach the desired goal of
creating an autonomous robot.

ACKNOWLEDGMENT

The group thanks to everyone who helped and supported
us during the research and development of the project mainly
to Eveling Castro Gutierrez (School of Systems Engineering,
UNSA) who supported us with the kinect device.

REFERENCES

[1] P. Corke, Robotics Vision and Control: Fundamental Algorithms in
Matlab, 2011.

[2] J. Webb and J. Ashley, Beginning Kinect Programming with the Mi-
crosoft Kinect SDK, 2012.

[3] J. S. Jean, Kinect Hacks, 2013.
[4] N. Burrus, “Introduction to surf,” http://labs.manctl.com/rgbdemo/.
[5] OpenCV, “Openni with opencv,” http://docs.opencv.org/doc/user_guide/

ug_highgui.html.
[6] E. H. Land, “An alternative technique for the computation of the

designator in the retinex theory of color vision.” 1986.
[7] D. J. Jobson, Z. Rahman, and G. A. Woodell, “Properties and Perfor-

mance of a Center/Surround Retinex,” 1997.
[8] A. Hurlbert, “Formal connections between lightness algorithms,” 1986.
[9] OpenCV, “Introduction to surf,” http://docs.opencv.org/master/doc/py_

tutorials/py_feature2d/py_surf_intro/py_surf_intro.html.
[10] C. Cortes and V. Vapnik, “Support Vector Networks,” 1995.
[11] C. Chang and C. Lin, “LIBSVM : a Library for Support Vector

Machines,” 2003.
[12] S. Monk, 30 Arduino Projects for the Evil Genius, 2010.

http://labs.manctl.com/rgbdemo/
http://docs.opencv.org/doc/user_guide/ug_highgui.html
http://docs.opencv.org/doc/user_guide/ug_highgui.html
http://docs.opencv.org/master/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html
http://docs.opencv.org/master/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html

	Introduction
	Mechanical Structure
	Locomotion
	Excavator Arm
	Ramp

	Vision System
	Kinect
	Robot Vision
	Kinect Depth Sensing Process

	Image Processing
	Pre-Processing
	Segmentation
	Structural Analysis and Shape Descriptors

	Can recognition
	Feature Detection
	Support Vector Machine (SVM)
	SVM for Linearly non-separable data

	Electronics
	Conclusions and Future Work
	References

