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Abstract— This paper presents a novel algorithm for Model 
Predictive Control (MPC) of a nonlinear class that can be applied to 
systems subject to linear state and control constraints. A piecewise 
linear representation of the nonlinear system is obtained, by fixing 
the sequence of future inputs. A quadratic optimization problem is 
then repeatedly solved until convergence is reached. In this case, it is 
proved that no prediction error occurs and, consequently, the state 
and control constraints are satisfied by the original nonlinear system. 
The proposed technique is applied to a two-wheeled nonholonomic 
mobile robot, known to be difficult to control with linear techniques. 
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I. INTRODUCTION  

Model predictive control (MPC) has a long history in 
the field of control engineering. It is one of the few areas that 
has received on-going interest from researchers in both the 
industrial and academic communities. Four major aspects of 
model predictive control make the design methodology 
attractive to both practitioners and academics. The first aspect 
is the design formulation, which uses a completely 
multivariable system framework where the performance 
parameters of the multivariable control system are related to 
the engineering aspects of the system; hence, they can be 
understood and ‘tuned’ by engineers. The second aspect is the 
ability of the method to handle both ‘soft’ and hard constraints 
in a multivariable control framework. This is particularly 
attractive to industry where tight profit margins and limits on 
the process operation are inevitably present. The third aspect 
is the ability to perform on-line process optimization. The 
fourth aspect is the simplicity of the design framework in 
handling all these complex issues. [1]. 

A wheeled mobile robot (WMR) is defined as a 
wheeled vehicle that can move autonomously without 
assistance from external human operator. The WMR is 
equipped with a set of motorized actuators and, sometimes, 
with an array of sensors, which help it to carry out useful work 
[2].  

Wheeled mobile robots (WMRs) are increasingly 
present in industrial and service robotics, particularly when 

flexible motion capabilities are required on reasonably smooth 
grounds and surfaces [3].  The problem of autonomous control 
of WMRs has attracted the interest of researchers in view of 
its theoretical challenges.  

In the absence of workspace obstacles, the basic 
motion tasks assigned to a WMR may be reduced to following 
a given trajectory or reaching a given destination. From a 
control viewpoint, the second problem is easier than the first.   

A schematic diagram of the robot is presented on 
figure 1. The configuration is represented by its position on 
the Cartesian space (x and y, that is the position of the robot-
body center with relation to a referential frame fixed on the 
workspace), and by its orientation � (angle between the robot 
orientation vector and the reference axis X, fixed on the 
workspace). 
 

Figure 1: Schematic diagram of a two-wheeled nonholonomic robot. 

 
 

In this paper is proposed to make a two-wheeled 
differentially driven nonholonomic mobile robot reach a given 
destination.  A piecewise linear representation of the nonlinear 
system is obtained, by initially fixing the sequence of future 
inputs. A quadratic optimization problem is then repeatedly 
solved until convergence is reached so that, the first element 
of the optimized input vector can be used in the system. In this 
case, it is proved that no prediction error occurs and, 
consequently, the state and control constraints are satisfied by 
the original nonlinear system. 



II. CONTROL STRATEGY         

A. Model Predictive Control applied to a Linear System 

In the case where the system is in linear format, we 
have the following representation in discrete time: ���� + 1� = 
���� + �����
��� = ����� 																																																						�1� 

Where � ∈ 	ℝ� is the state vector, � ∈ 	ℝ� is the 
input vector, 
 ∈ 	ℝ� is the output vector and � ∈ ℕ is the 
sampling instant. 

To find the prediction equation in the absence of 
disturbances and noise when the measurement of the full state 
vector is available [5,8], we have: 
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Where �� is the prediction horizon, �� is the control 
horizon, ����� is the estimated state vector and ∆��  is the 
estimated difference of the control variable. 

Thus, the prediction of the system output (6���) is 
given in matrix form by: 6��� = 	Ψ���� + 	Υ��� − 1� + 	Θ∆:���																													�3� 

Where: 
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Where the tracking error is given by: ε�k� = τ�k� − Ψ���� − 	Υ��� − 1�																																					�7� 
In the event of constraints in ∆:���, :���, 6��� and F���, respectively, they are treated as follows: G H∆:���1 I 	≤ 	0																																																																								�8� L H:���1 I 	≤ 	0																																																																											�9� N H6���1 I 	≤ 	0																																																																									�10� � HF���1 I 	≤ 	0																																																																									�11� 

 
Suppose: L = [L', LQ, … , L$%, R], where f is the last column of F N	 = 	 [Γ, U], g is the last column of G �	 = 	 [P, W], p is the last column of P X	 = 	 [1, Y], w is the last column of W 
These inequations can be rewritten in dependency 

with Δ:, according to equation (3) in the following matrix 
form: 

< LΓΘX[\> Δ:��� ≤ < −	L'��� + 1� − 	R−Γ[Ψ���� + 	Υ��� − 1�] − 	UY−[�]���� + ^��� − 1� − W >												�12� 

The predictive control algorithms utilize cost 
functions in order to penalize deviations of the output from the 
reference. Based on this error, one can obtain: _��� = ∑ ∥ 
̂�� + c|�� − d�� + c|�� ∥e�*�Q$(*,$f +∑ ∥ Δu��� + c|�� ∥h�*�Q$%+'*,- 																																																					�13�  

Where _��� is the performance index (cost function) 
of finite horizon to be optimized, �i > 1, 
̂��|�� is the 
predicted controlled output, d��|�� is the reference trajectory,  
Q is the weighting matrix of the tracking error, R is the 
weighting matrix of the control effort (Q and R are positive 
definite matrices). 

Equation (13) can be written in the following matrix 
form: _��� 	= 	 ||6��� 	− 	k���||eQ + ||Δ:���||hQ 																			�14� 

Where: 

6��� = l
̂�� + �i|��⋮
̂�� + ��|��m																																																			�15� 
k��� = ld̂�� + �i|��⋮d̂�� + ��|��m																																																			�16� 



Δ:��� = 2 Δu���|��⋮Δu��� + �� − 1|��4																																															�17� 
Subject to the weighting matrices given by: 

Q	 = 	 <o��i� 0 … 									00 o��i + 1� … 									0⋮0 ⋮0 	⋱		… ⋮o��i�>																						�18� 

R	 = 	 <q�0� 0 … 											00 q�1� … 											0⋮0 ⋮0 						⋱							… 		⋮q��� − 1�>																									�19� 

It is possible to write the cost function as follows: _��� 	= 	�rstuvsu	 − 	Δ:���wN	 + 	Δ:���w�Δ:���				�20� 
Where: N	 = 	2ΘxQE�k�																																																																								�21� �	 = 	ΘwoΘ	 + 	q																																																																					�22� E�k� is the tracking error vector. 
To find the optimal Δ:���, it is needed to find the 

gradient of _��� and set it to zero.  So the optimal set of 
future input moves can be found by: Δ:��� = 12�+'N																																																																						�23� 

Since the matrix H is usually ill-conditioned, the best 
way to find the optimal ∆U, respecting the constraints 
described in the inequation (12), is using Quadratic 
Programming. 

B. Alternative Nonlinear Model Predictive Control 

For the application of the proposed control method, 
the nonlinear system represented in discrete time must be 
written in the following form [6,7]: z��� + 1� = R�����, ���� ���� + U�����, ���� ����
��� = ����� �24� 

Where � ∈ 	ℝ� is the state vector, � ∈ 	ℝ� is the 
input vector, 
 ∈ 	ℝ� is the output vector and � ∈ ℕ is the 
sampling instant. 

Considering the prediction equation of state c steps 
ahead, one has: ���� + 1 + c� = R����� + c�, ���� + c� ���� + c� + U����� + c�, ���� + c� ���� + c�																															�25�                                           

It is possible to notice that if ���� + c� and  ���� + c� 
were fixed over the horizon c = 0,1, …�� − 1, it would be 
possible to find the equation of state in a piecewise linear 
system described by: ���� + 1 + c� = 
*���, ������� + c� + �*���, ������� + c�				�26� 

Where: 
�c����, ��� = R����� + c�, ���� + c� 																																														 ��c����, ��� = U����� + c�, ���� + c� 																																			�27� 
However, ���� + c� and  ���� + c� are not known over 

the horizon since ���� + c�  depends on the future inputs ���� + c�. 
Nevertheless, it is possible to describe an algorithm 

that converges to the correct predicted values, as follows: 
Differently from the linear case, where the matrices 

A, B and C are constant, based on equation (3), one can find: 
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The proposed controller is explained in the following 
steps: 

1. Take a guess and fix what could be the future 
inputs ���� + ~�, ~ = 1,2, …�� − 1.  Use it to calculate ���� + c�, c = 1,2, …�� with the equation (24). 

2. Substitute ���� + c� and ���� + c� in equation (27) 
to obtain a piecewise linear representation of the nonlinear 
system for each c: 
�c�	vs�	��c�			c = 1,2, …��. 

3. Formulate the equation (28).  
4. Similarly to the Linear MPC, Use equation (23) to 

find the optimal ∆U. 
5. Repeat steps 2, 3 and 4 until the norm vector 

between the new ���� + ~� and the old ���� + ~� is within a 
predetermined tolerance. 

6. Once the norm vector reaches a desired value, the 
actual control input becomes the first sample of  �����. 

7. Repeat steps 1 to 6 for each sampling instant � of 
the algorithm. 

There will be an error between the predicted states 
and the states that would be generated by the nonlinear model 
due to the following reason: in step 4, the future values of the 
states are calculated from the application of optimal control 
sequence calculated in step 3 and the non-linear model. In step 
2, these future values are used to form the piecewise linear 
model in the optimization of the next iteration.  

However, this piecewise linear model only 
corresponds to the non-linear model if the future values of the 
states did not change from one iteration to another, i.e., this 
would occur if the optimal sequence ���� + ~� did not modify 
from one iteration to the next. Thus, if this algorithm 
converges, the final values of ���� + c� and  ���� + c� 
predicted by the piecewise linear model are equal to those 
predicted by the original nonlinear model.  

Thus, if the optimization problem has a feasible 
solution, it ensures that constraints (12) are met along the 



prediction horizon. This is the largest advantage of the 
proposed method compared to those based on approximations 
of the model that cannot guarantee the satisfaction of 
constraints in the states. 

Unlike strategies that focus on the direct resolution of 
the non-convex optimization problem, the strategy proposed 
here does not guarantee optimality. _��� Provides however, 
solutions that improve at each iteration of the algorithm.  

III. ROBOTIC APPLICATION  

The proposed robot is described by the following 
kinematic model: �� = cos��� � �� = sen��� � �� = � �32� 

Where � is the forward velocity, � is the steering 
velocity, ��; 	�� is the position of the mass center of the robot 
moving in the plane and � denotes its heading angle from the 
horizontal axis.  

It can be transformed into the following state space 
representation: 

 

2������ 4 	 20 0 00 0 00 0 04 �
���� + 2cos	��� 0t}s��� 00 14 H

��I 

 	 21 0 00 1 00 0 14 �

���� �33� 
Where 
 is the system output and it was decided to be 

used to control, independently, all three state variables. 
The dynamic model is derived from the actuators 

dynamics and the robot dynamics parameters, like mass, 
inertia momentum and friction coefficients [4].  

The suggested model indicates that the problem is 
truly nonlinear based on the matrix B, thus linear control is 
ineffective, even locally, and innovative design techniques are 
needed [3].   

Here, the velocities � and � are taken as the inputs 
and are subject to the following constraints: |��u�| J ����  ��*� J ��u� J ���� ∀u																																																	�34� 

Approximating the derivatives for finite differences 
using a sampling period equal to T, one obtains the following 
discrete-time model: 

l��� + 1���� + 1���� + 1�m 	 21 0 00 1 00 0 14 l
������������m + 2Tcos	��� 0�t}s��� 00 �4 H

��I 

��� 	 21 0 00 1 00 0 14 l

������������m																																					 �35� 
 Basically, the proposed controller is used to steer the 

robot from a starting position ��-, �-� with heading angle �- 
to a ��� , ��� heading angle ��, according to Figure 2: 

 

Figure 2: Control objective 

 

IV. RESULTS 

In all cases, the following conditions will be the 
same: � 	 0,1t, �� 	 10, �� 	 5, o 	 1, q 	 0,1,  ��-, �-� 	 �0, 0�,|��u�| J H 10.005I 
A. Verifying constraints applied to the states variables 

Keeping the heading angle constant �- 	 �� 	0,7854 rad, and ��� , �� 	 �4, 5�, figures 3, 4 and 5 shows 
the results when no constraint is applied to the state variables 
and figures 6,7 and 8 shows results when it is, as follows: 

 
Figure 3: State variables 

 
Figure 4:  Input 
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Figure 5:  Robot trajectory 

 
Figure 6:  State variables 

 
Figure 7: Input 

 
Figure 8: Robot trajectory 

 

 The constraint applied to state variables was: 

��*� 	 2 00−csR4							���� 	 2 33+csR4 
It is possible to notice that once one of the state 

variables reaches the imposed constraint, the robot stops 
(figure 8) according with the imposed constraint. 

 

B. Verifying the behavior when the heading angle varies 

Given (�- ≠ ��), �- 	 1,3963 rad �� 	 0,5236 rad, 
figures 9, 10 and 11 shows results for ��� , �� 	 �20, 20�, 
while figures 12,13 and 14, for ��� , �� 	 �20, 10�, as 
follows: 

Figure 9:  State variables 

 

Figure 10:  Input 

 
Figure 11:  Robot trajectory 
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Figure 12:  State variables 

 

Figure 13:  Input 

 

Figure 14:  Robot trajectory 

 
 
 
 
It is possible to notice that once the reference was 

changed to��� , �� 	 �20, 10� the robot is unable to reach it 
(figure 14) as expected. 

V. CONCLUSION 

After analyzing the results, it was possible to 
visualize the satisfaction of the imposed constraints which is 
one of the advantages for the use of the proposed MPC, but 
because of the nonholonomic restrictions, constant reference 
and the number of the state variables higher than the number 

of inputs, the robot is not capable to reach the desired 
reference when heading angle varies.  

A proposal for future work would be to provide a set 
of coordinates for a predetermined trajectory to be followed as 
a reference, or even the use of a more elaborated model that 
will allow the proposed controller show its full capabilities. 
Once it is done, comparison of results with other nonlinear 
methods of control would be motivating. 
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